/* htop - SolarisProcessList.c (C) 2014 Hisham H. Muhammad (C) 2017,2018 Guy M. Broome Released under the GNU GPLv2+, see the COPYING file in the source distribution for its full text. */ #include "solaris/SolarisProcessList.h" #include #include #include #include #include #include #include #include #include #include #include #include "CRT.h" #include "solaris/Platform.h" #include "solaris/SolarisProcess.h" #define GZONE "global " #define UZONE "unknown " static int pageSize; static int pageSizeKB; static char* SolarisProcessList_readZoneName(kstat_ctl_t* kd, SolarisProcess* sproc) { char* zname; if ( sproc->zoneid == 0 ) { zname = xStrdup(GZONE); } else if ( kd == NULL ) { zname = xStrdup(UZONE); } else { kstat_t* ks = kstat_lookup_wrapper( kd, "zones", sproc->zoneid, NULL ); zname = xStrdup(ks == NULL ? UZONE : ks->ks_name); } return zname; } static void SolarisProcessList_updateCPUcount(ProcessList* super) { SolarisProcessList* spl = (SolarisProcessList*) super; long int s; bool change = false; s = sysconf(_SC_NPROCESSORS_CONF); if (s < 1) CRT_fatalError("Cannot get existing CPU count by sysconf(_SC_NPROCESSORS_CONF)"); if (s != super->existingCPUs) { if (s == 1) { spl->cpus = xRealloc(spl->cpus, sizeof(CPUData)); spl->cpus[0].online = true; } else { spl->cpus = xReallocArray(spl->cpus, s + 1, sizeof(CPUData)); spl->cpus[0].online = true; /* average is always "online" */ for (int i = 1; i < s + 1; i++) { spl->cpus[i].online = false; } } change = true; super->existingCPUs = s; } s = sysconf(_SC_NPROCESSORS_ONLN); if (s < 1) CRT_fatalError("Cannot get active CPU count by sysconf(_SC_NPROCESSORS_ONLN)"); if (s != super->activeCPUs) { change = true; super->activeCPUs = s; } if (change) { kstat_close(spl->kd); spl->kd = kstat_open(); if (!spl->kd) CRT_fatalError("Cannot open kstat handle"); } } ProcessList* ProcessList_new(UsersTable* usersTable, Hashtable* dynamicMeters, Hashtable* dynamicColumns, Hashtable* pidMatchList, uid_t userId) { SolarisProcessList* spl = xCalloc(1, sizeof(SolarisProcessList)); ProcessList* pl = (ProcessList*) spl; ProcessList_init(pl, Class(SolarisProcess), usersTable, dynamicMeters, dynamicColumns, pidMatchList, userId); spl->kd = kstat_open(); if (!spl->kd) CRT_fatalError("Cannot open kstat handle"); pageSize = sysconf(_SC_PAGESIZE); if (pageSize == -1) CRT_fatalError("Cannot get pagesize by sysconf(_SC_PAGESIZE)"); pageSizeKB = pageSize / 1024; SolarisProcessList_updateCPUcount(pl); return pl; } static inline void SolarisProcessList_scanCPUTime(ProcessList* pl) { const SolarisProcessList* spl = (SolarisProcessList*) pl; unsigned int activeCPUs = pl->activeCPUs; unsigned int existingCPUs = pl->existingCPUs; kstat_t* cpuinfo = NULL; kstat_named_t* idletime = NULL; kstat_named_t* intrtime = NULL; kstat_named_t* krnltime = NULL; kstat_named_t* usertime = NULL; kstat_named_t* cpu_freq = NULL; double idlebuf = 0; double intrbuf = 0; double krnlbuf = 0; double userbuf = 0; int arrskip = 0; assert(existingCPUs > 0); assert(spl->kd); if (existingCPUs > 1) { // Store values for the stats loop one extra element up in the array // to leave room for the average to be calculated afterwards arrskip++; } // Calculate per-CPU statistics first for (unsigned int i = 0; i < existingCPUs; i++) { CPUData* cpuData = &(spl->cpus[i + arrskip]); if ((cpuinfo = kstat_lookup_wrapper(spl->kd, "cpu", i, "sys")) != NULL) { cpuData->online = true; if (kstat_read(spl->kd, cpuinfo, NULL) != -1) { idletime = kstat_data_lookup_wrapper(cpuinfo, "cpu_nsec_idle"); intrtime = kstat_data_lookup_wrapper(cpuinfo, "cpu_nsec_intr"); krnltime = kstat_data_lookup_wrapper(cpuinfo, "cpu_nsec_kernel"); usertime = kstat_data_lookup_wrapper(cpuinfo, "cpu_nsec_user"); } } else { cpuData->online = false; continue; } assert( (idletime != NULL) && (intrtime != NULL) && (krnltime != NULL) && (usertime != NULL) ); if (pl->settings->showCPUFrequency) { if ((cpuinfo = kstat_lookup_wrapper(spl->kd, "cpu_info", i, NULL)) != NULL) { if (kstat_read(spl->kd, cpuinfo, NULL) != -1) { cpu_freq = kstat_data_lookup_wrapper(cpuinfo, "current_clock_Hz"); } } assert( cpu_freq != NULL ); } uint64_t totaltime = (idletime->value.ui64 - cpuData->lidle) + (intrtime->value.ui64 - cpuData->lintr) + (krnltime->value.ui64 - cpuData->lkrnl) + (usertime->value.ui64 - cpuData->luser); // Calculate percentages of deltas since last reading cpuData->userPercent = ((usertime->value.ui64 - cpuData->luser) / (double)totaltime) * 100.0; cpuData->nicePercent = (double)0.0; // Not implemented on Solaris cpuData->systemPercent = ((krnltime->value.ui64 - cpuData->lkrnl) / (double)totaltime) * 100.0; cpuData->irqPercent = ((intrtime->value.ui64 - cpuData->lintr) / (double)totaltime) * 100.0; cpuData->systemAllPercent = cpuData->systemPercent + cpuData->irqPercent; cpuData->idlePercent = ((idletime->value.ui64 - cpuData->lidle) / (double)totaltime) * 100.0; // Store current values to use for the next round of deltas cpuData->luser = usertime->value.ui64; cpuData->lkrnl = krnltime->value.ui64; cpuData->lintr = intrtime->value.ui64; cpuData->lidle = idletime->value.ui64; // Add frequency in MHz cpuData->frequency = pl->settings->showCPUFrequency ? (double)cpu_freq->value.ui64 / 1E6 : NAN; // Accumulate the current percentages into buffers for later average calculation if (existingCPUs > 1) { userbuf += cpuData->userPercent; krnlbuf += cpuData->systemPercent; intrbuf += cpuData->irqPercent; idlebuf += cpuData->idlePercent; } } if (existingCPUs > 1) { CPUData* cpuData = &(spl->cpus[0]); cpuData->userPercent = userbuf / activeCPUs; cpuData->nicePercent = (double)0.0; // Not implemented on Solaris cpuData->systemPercent = krnlbuf / activeCPUs; cpuData->irqPercent = intrbuf / activeCPUs; cpuData->systemAllPercent = cpuData->systemPercent + cpuData->irqPercent; cpuData->idlePercent = idlebuf / activeCPUs; } } static inline void SolarisProcessList_scanMemoryInfo(ProcessList* pl) { SolarisProcessList* spl = (SolarisProcessList*) pl; static kstat_t *meminfo = NULL; int ksrphyserr = -1; kstat_named_t *totalmem_pgs = NULL; kstat_named_t *freemem_pgs = NULL; kstat_named_t *pages = NULL; struct swaptable *sl = NULL; struct swapent *swapdev = NULL; uint64_t totalswap = 0; uint64_t totalfree = 0; int nswap = 0; char *spath = NULL; char *spathbase = NULL; // Part 1 - physical memory if (spl->kd != NULL && meminfo == NULL) { // Look up the kstat chain just once, it never changes meminfo = kstat_lookup_wrapper(spl->kd, "unix", 0, "system_pages"); } if (meminfo != NULL) { ksrphyserr = kstat_read(spl->kd, meminfo, NULL); } if (ksrphyserr != -1) { totalmem_pgs = kstat_data_lookup_wrapper(meminfo, "physmem"); freemem_pgs = kstat_data_lookup_wrapper(meminfo, "freemem"); pages = kstat_data_lookup_wrapper(meminfo, "pagestotal"); pl->totalMem = totalmem_pgs->value.ui64 * pageSizeKB; if (pl->totalMem > freemem_pgs->value.ui64 * pageSizeKB) { pl->usedMem = pl->totalMem - freemem_pgs->value.ui64 * pageSizeKB; } else { pl->usedMem = 0; // This can happen in non-global zone (in theory) } // Not sure how to implement this on Solaris - suggestions welcome! pl->cachedMem = 0; // Not really "buffers" but the best Solaris analogue that I can find to // "memory in use but not by programs or the kernel itself" pl->buffersMem = (totalmem_pgs->value.ui64 - pages->value.ui64) * pageSizeKB; } else { // Fall back to basic sysconf if kstat isn't working pl->totalMem = sysconf(_SC_PHYS_PAGES) * pageSize; pl->buffersMem = 0; pl->cachedMem = 0; pl->usedMem = pl->totalMem - (sysconf(_SC_AVPHYS_PAGES) * pageSize); } // Part 2 - swap nswap = swapctl(SC_GETNSWP, NULL); if (nswap > 0) { sl = xMalloc((nswap * sizeof(swapent_t)) + sizeof(int)); } if (sl != NULL) { spathbase = xMalloc( nswap * MAXPATHLEN ); } if (spathbase != NULL) { spath = spathbase; swapdev = sl->swt_ent; for (int i = 0; i < nswap; i++, swapdev++) { swapdev->ste_path = spath; spath += MAXPATHLEN; } sl->swt_n = nswap; } nswap = swapctl(SC_LIST, sl); if (nswap > 0) { swapdev = sl->swt_ent; for (int i = 0; i < nswap; i++, swapdev++) { totalswap += swapdev->ste_pages; totalfree += swapdev->ste_free; } } free(spathbase); free(sl); pl->totalSwap = totalswap * pageSizeKB; pl->usedSwap = pl->totalSwap - (totalfree * pageSizeKB); } static inline void SolarisProcessList_scanZfsArcstats(ProcessList* pl) { SolarisProcessList* spl = (SolarisProcessList*) pl; kstat_t *arcstats = NULL; int ksrphyserr = -1; kstat_named_t *cur_kstat = NULL; if (spl->kd != NULL) { arcstats = kstat_lookup_wrapper(spl->kd, "zfs", 0, "arcstats"); } if (arcstats != NULL) { ksrphyserr = kstat_read(spl->kd, arcstats, NULL); } if (ksrphyserr != -1) { cur_kstat = kstat_data_lookup_wrapper( arcstats, "size" ); spl->zfs.size = cur_kstat->value.ui64 / 1024; spl->zfs.enabled = spl->zfs.size > 0 ? 1 : 0; cur_kstat = kstat_data_lookup_wrapper( arcstats, "c_max" ); spl->zfs.max = cur_kstat->value.ui64 / 1024; cur_kstat = kstat_data_lookup_wrapper( arcstats, "mfu_size" ); spl->zfs.MFU = cur_kstat != NULL ? cur_kstat->value.ui64 / 1024 : 0; cur_kstat = kstat_data_lookup_wrapper( arcstats, "mru_size" ); spl->zfs.MRU = cur_kstat != NULL ? cur_kstat->value.ui64 / 1024 : 0; cur_kstat = kstat_data_lookup_wrapper( arcstats, "anon_size" ); spl->zfs.anon = cur_kstat != NULL ? cur_kstat->value.ui64 / 1024 : 0; cur_kstat = kstat_data_lookup_wrapper( arcstats, "hdr_size" ); spl->zfs.header = cur_kstat != NULL ? cur_kstat->value.ui64 / 1024 : 0; cur_kstat = kstat_data_lookup_wrapper( arcstats, "other_size" ); spl->zfs.other = cur_kstat != NULL ? cur_kstat->value.ui64 / 1024 : 0; if ((cur_kstat = kstat_data_lookup_wrapper( arcstats, "compressed_size" )) != NULL) { spl->zfs.compressed = cur_kstat->value.ui64 / 1024; spl->zfs.isCompressed = 1; cur_kstat = kstat_data_lookup_wrapper( arcstats, "uncompressed_size" ); spl->zfs.uncompressed = cur_kstat->value.ui64 / 1024; } else { spl->zfs.isCompressed = 0; } } } void ProcessList_delete(ProcessList* pl) { SolarisProcessList* spl = (SolarisProcessList*) pl; ProcessList_done(pl); free(spl->cpus); if (spl->kd) { kstat_close(spl->kd); } free(spl); } static void SolarisProcessList_updateExe(pid_t pid, Process* proc) { char path[32]; xSnprintf(path, sizeof(path), "/proc/%d/path/a.out", pid); char target[PATH_MAX]; ssize_t ret = readlink(path, target, sizeof(target) - 1); if (ret <= 0) return; target[ret] = '\0'; Process_updateExe(proc, target); } static void SolarisProcessList_updateCwd(pid_t pid, Process* proc) { char path[32]; xSnprintf(path, sizeof(path), "/proc/%d/cwd", pid); char target[PATH_MAX]; ssize_t ret = readlink(path, target, sizeof(target) - 1); if (ret <= 0) return; target[ret] = '\0'; free_and_xStrdup(&proc->procCwd, target); } /* NOTE: the following is a callback function of type proc_walk_f * and MUST conform to the appropriate definition in order * to work. See libproc(3LIB) on a Solaris or Illumos * system for more info. */ static int SolarisProcessList_walkproc(psinfo_t* _psinfo, lwpsinfo_t* _lwpsinfo, void* listptr) { bool preExisting; pid_t getpid; // Setup process list ProcessList* pl = (ProcessList*) listptr; SolarisProcessList* spl = (SolarisProcessList*) listptr; id_t lwpid_real = _lwpsinfo->pr_lwpid; if (lwpid_real > 1023) { return 0; } pid_t lwpid = (_psinfo->pr_pid * 1024) + lwpid_real; bool onMasterLWP = (_lwpsinfo->pr_lwpid == _psinfo->pr_lwp.pr_lwpid); if (onMasterLWP) { getpid = _psinfo->pr_pid * 1024; } else { getpid = lwpid; } Process* proc = ProcessList_getProcess(pl, getpid, &preExisting, SolarisProcess_new); SolarisProcess* sproc = (SolarisProcess*) proc; // Common code pass 1 proc->show = false; sproc->taskid = _psinfo->pr_taskid; sproc->projid = _psinfo->pr_projid; sproc->poolid = _psinfo->pr_poolid; sproc->contid = _psinfo->pr_contract; proc->priority = _lwpsinfo->pr_pri; proc->nice = _lwpsinfo->pr_nice - NZERO; proc->processor = _lwpsinfo->pr_onpro; proc->state = _lwpsinfo->pr_sname; // NOTE: This 'percentage' is a 16-bit BINARY FRACTIONS where 1.0 = 0x8000 // Source: https://docs.oracle.com/cd/E19253-01/816-5174/proc-4/index.html // (accessed on 18 November 2017) proc->percent_mem = ((uint16_t)_psinfo->pr_pctmem / (double)32768) * (double)100.0; proc->pgrp = _psinfo->pr_pgid; proc->nlwp = _psinfo->pr_nlwp; proc->session = _psinfo->pr_sid; proc->tty_nr = _psinfo->pr_ttydev; const char* name = (_psinfo->pr_ttydev != PRNODEV) ? ttyname(_psinfo->pr_ttydev) : NULL; if (!name) { free(proc->tty_name); proc->tty_name = NULL; } else { free_and_xStrdup(&proc->tty_name, name); } proc->m_resident = _psinfo->pr_rssize; // KB proc->m_virt = _psinfo->pr_size; // KB if (proc->st_uid != _psinfo->pr_euid) { proc->st_uid = _psinfo->pr_euid; proc->user = UsersTable_getRef(pl->usersTable, proc->st_uid); } if (!preExisting) { sproc->realpid = _psinfo->pr_pid; sproc->lwpid = lwpid_real; sproc->zoneid = _psinfo->pr_zoneid; sproc->zname = SolarisProcessList_readZoneName(spl->kd, sproc); SolarisProcessList_updateExe(_psinfo->pr_pid, proc); Process_updateComm(proc, _psinfo->pr_fname); Process_updateCmdline(proc, _psinfo->pr_psargs, 0, 0); if (proc->settings->flags & PROCESS_FLAG_CWD) { SolarisProcessList_updateCwd(_psinfo->pr_pid, proc); } } // End common code pass 1 if (onMasterLWP) { // Are we on the representative LWP? proc->ppid = (_psinfo->pr_ppid * 1024); proc->tgid = (_psinfo->pr_ppid * 1024); sproc->realppid = _psinfo->pr_ppid; sproc->realtgid = _psinfo->pr_ppid; // See note above (in common section) about this BINARY FRACTION proc->percent_cpu = ((uint16_t)_psinfo->pr_pctcpu / (double)32768) * (double)100.0; proc->time = _psinfo->pr_time.tv_sec; if (!preExisting) { // Tasks done only for NEW processes proc->isUserlandThread = false; proc->starttime_ctime = _psinfo->pr_start.tv_sec; } // Update proc and thread counts based on settings if (proc->isKernelThread && !pl->settings->hideKernelThreads) { pl->kernelThreads += proc->nlwp; pl->totalTasks += proc->nlwp + 1; if (proc->state == 'O') { pl->runningTasks++; } } else if (!proc->isKernelThread) { if (proc->state == 'O') { pl->runningTasks++; } if (pl->settings->hideUserlandThreads) { pl->totalTasks++; } else { pl->userlandThreads += proc->nlwp; pl->totalTasks += proc->nlwp + 1; } } proc->show = !(pl->settings->hideKernelThreads && proc->isKernelThread); } else { // We are not in the master LWP, so jump to the LWP handling code proc->percent_cpu = ((uint16_t)_lwpsinfo->pr_pctcpu / (double)32768) * (double)100.0; proc->time = _lwpsinfo->pr_time.tv_sec; if (!preExisting) { // Tasks done only for NEW LWPs proc->isUserlandThread = true; proc->ppid = _psinfo->pr_pid * 1024; proc->tgid = _psinfo->pr_pid * 1024; sproc->realppid = _psinfo->pr_pid; sproc->realtgid = _psinfo->pr_pid; proc->starttime_ctime = _lwpsinfo->pr_start.tv_sec; } // Top-level process only gets this for the representative LWP if (proc->isKernelThread && !pl->settings->hideKernelThreads) { proc->show = true; } if (!proc->isKernelThread && !pl->settings->hideUserlandThreads) { proc->show = true; } } // Top-level LWP or subordinate LWP // Common code pass 2 if (!preExisting) { if ((sproc->realppid <= 0) && !(sproc->realpid <= 1)) { proc->isKernelThread = true; } else { proc->isKernelThread = false; } Process_fillStarttimeBuffer(proc); ProcessList_add(pl, proc); } proc->updated = true; // End common code pass 2 return 0; } void ProcessList_goThroughEntries(ProcessList* super, bool pauseProcessUpdate) { SolarisProcessList_updateCPUcount(super); SolarisProcessList_scanCPUTime(super); SolarisProcessList_scanMemoryInfo(super); SolarisProcessList_scanZfsArcstats(super); // in pause mode only gather global data for meters (CPU/memory/...) if (pauseProcessUpdate) { return; } super->kernelThreads = 1; proc_walk(&SolarisProcessList_walkproc, super, PR_WALK_LWP); } bool ProcessList_isCPUonline(const ProcessList* super, unsigned int id) { assert(id < super->existingCPUs); const SolarisProcessList* spl = (const SolarisProcessList*) super; return (super->existingCPUs == 1) ? true : spl->cpus[id + 1].online; }