/* htop - NetBSDProcessList.c (C) 2014 Hisham H. Muhammad (C) 2015 Michael McConville (C) 2021 Santhosh Raju (C) 2021 htop dev team Released under the GNU GPLv2+, see the COPYING file in the source distribution for its full text. */ #include "netbsd/NetBSDProcessList.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "CRT.h" #include "Macros.h" #include "Object.h" #include "Process.h" #include "ProcessList.h" #include "Settings.h" #include "XUtils.h" #include "netbsd/NetBSDProcess.h" static long fscale; static int pageSize; static int pageSizeKB; static const struct { const char* name; long int scale; } freqSysctls[] = { { "machdep.est.frequency.current", 1 }, { "machdep.powernow.frequency.current", 1 }, { "machdep.intrepid.frequency.current", 1 }, { "machdep.loongson.frequency.current", 1 }, { "machdep.cpu.frequency.current", 1 }, { "machdep.frequency.current", 1 }, { "machdep.tsc_freq", 1000000 }, }; static void NetBSDProcessList_updateCPUcount(ProcessList* super) { NetBSDProcessList* opl = (NetBSDProcessList*) super; // Definitions for sysctl(3), cf. https://nxr.netbsd.org/xref/src/sys/sys/sysctl.h#813 const int mib_ncpu_existing[] = { CTL_HW, HW_NCPU }; // Number of existing CPUs const int mib_ncpu_online[] = { CTL_HW, HW_NCPUONLINE }; // Number of online/active CPUs int r; unsigned int value; size_t size; bool change = false; // Query the number of active/online CPUs. size = sizeof(value); r = sysctl(mib_ncpu_online, 2, &value, &size, NULL, 0); if (r < 0 || value < 1) { value = 1; } if (value != super->activeCPUs) { super->activeCPUs = value; change = true; } // Query the total number of CPUs. size = sizeof(value); r = sysctl(mib_ncpu_existing, 2, &value, &size, NULL, 0); if (r < 0 || value < 1) { value = super->activeCPUs; } if (value != super->existingCPUs) { opl->cpuData = xReallocArray(opl->cpuData, value + 1, sizeof(CPUData)); super->existingCPUs = value; change = true; } // Reset CPU stats when number of online/existing CPU cores changed if (change) { CPUData* dAvg = &opl->cpuData[0]; memset(dAvg, '\0', sizeof(CPUData)); dAvg->totalTime = 1; dAvg->totalPeriod = 1; for (unsigned int i = 0; i < super->existingCPUs; i++) { CPUData* d = &opl->cpuData[i + 1]; memset(d, '\0', sizeof(CPUData)); d->totalTime = 1; d->totalPeriod = 1; } } } ProcessList* ProcessList_new(UsersTable* usersTable, Hashtable* dynamicMeters, Hashtable* dynamicColumns, Hashtable* pidMatchList, uid_t userId) { const int fmib[] = { CTL_KERN, KERN_FSCALE }; size_t size; char errbuf[_POSIX2_LINE_MAX]; NetBSDProcessList* npl = xCalloc(1, sizeof(NetBSDProcessList)); ProcessList* pl = (ProcessList*) npl; ProcessList_init(pl, Class(NetBSDProcess), usersTable, dynamicMeters, dynamicColumns, pidMatchList, userId); NetBSDProcessList_updateCPUcount(pl); size = sizeof(fscale); if (sysctl(fmib, 2, &fscale, &size, NULL, 0) < 0) { CRT_fatalError("fscale sysctl call failed"); } if ((pageSize = sysconf(_SC_PAGESIZE)) == -1) CRT_fatalError("pagesize sysconf call failed"); pageSizeKB = pageSize / ONE_K; npl->kd = kvm_openfiles(NULL, NULL, NULL, KVM_NO_FILES, errbuf); if (npl->kd == NULL) { CRT_fatalError("kvm_openfiles() failed"); } return pl; } void ProcessList_delete(ProcessList* this) { NetBSDProcessList* npl = (NetBSDProcessList*) this; if (npl->kd) { kvm_close(npl->kd); } free(npl->cpuData); ProcessList_done(this); free(this); } static void NetBSDProcessList_scanMemoryInfo(ProcessList* pl) { static int uvmexp_mib[] = {CTL_VM, VM_UVMEXP2}; struct uvmexp_sysctl uvmexp; size_t size_uvmexp = sizeof(uvmexp); if (sysctl(uvmexp_mib, 2, &uvmexp, &size_uvmexp, NULL, 0) < 0) { CRT_fatalError("uvmexp sysctl call failed"); } pl->totalMem = uvmexp.npages * pageSizeKB; pl->buffersMem = 0; pl->cachedMem = (uvmexp.filepages + uvmexp.execpages) * pageSizeKB; pl->usedMem = (uvmexp.active + uvmexp.wired) * pageSizeKB; pl->totalSwap = uvmexp.swpages * pageSizeKB; pl->usedSwap = uvmexp.swpginuse * pageSizeKB; } static void NetBSDProcessList_updateExe(const struct kinfo_proc2* kproc, Process* proc) { const int mib[] = { CTL_KERN, KERN_PROC_ARGS, kproc->p_pid, KERN_PROC_PATHNAME }; char buffer[2048]; size_t size = sizeof(buffer); if (sysctl(mib, 4, buffer, &size, NULL, 0) != 0) { Process_updateExe(proc, NULL); return; } /* Kernel threads return an empty buffer */ if (buffer[0] == '\0') { Process_updateExe(proc, NULL); return; } Process_updateExe(proc, buffer); } static void NetBSDProcessList_updateCwd(const struct kinfo_proc2* kproc, Process* proc) { const int mib[] = { CTL_KERN, KERN_PROC_ARGS, kproc->p_pid, KERN_PROC_CWD }; char buffer[2048]; size_t size = sizeof(buffer); if (sysctl(mib, 4, buffer, &size, NULL, 0) != 0) { free(proc->procCwd); proc->procCwd = NULL; return; } /* Kernel threads return an empty buffer */ if (buffer[0] == '\0') { free(proc->procCwd); proc->procCwd = NULL; return; } free_and_xStrdup(&proc->procCwd, buffer); } static void NetBSDProcessList_updateProcessName(kvm_t* kd, const struct kinfo_proc2* kproc, Process* proc) { Process_updateComm(proc, kproc->p_comm); /* * Like NetBSD's top(1), we try to fall back to the command name * (argv[0]) if we fail to construct the full command. */ char** arg = kvm_getargv2(kd, kproc, 500); if (arg == NULL || *arg == NULL) { Process_updateCmdline(proc, kproc->p_comm, 0, strlen(kproc->p_comm)); return; } size_t len = 0; for (int i = 0; arg[i] != NULL; i++) { len += strlen(arg[i]) + 1; /* room for arg and trailing space or NUL */ } /* don't use xMalloc here - we want to handle huge argv's gracefully */ char* s; if ((s = malloc(len)) == NULL) { Process_updateCmdline(proc, kproc->p_comm, 0, strlen(kproc->p_comm)); return; } *s = '\0'; int start = 0; int end = 0; for (int i = 0; arg[i] != NULL; i++) { size_t n = strlcat(s, arg[i], len); if (i == 0) { end = MINIMUM(n, len - 1); /* check if cmdline ended earlier, e.g 'kdeinit5: Running...' */ for (int j = end; j > 0; j--) { if (arg[0][j] == ' ' && arg[0][j - 1] != '\\') { end = (arg[0][j - 1] == ':') ? (j - 1) : j; } } } /* the trailing space should get truncated anyway */ strlcat(s, " ", len); } Process_updateCmdline(proc, s, start, end); free(s); } /* * Borrowed with modifications from NetBSD's top(1). */ static double getpcpu(const struct kinfo_proc2* kp) { if (fscale == 0) return 0.0; return 100.0 * (double)kp->p_pctcpu / fscale; } static void NetBSDProcessList_scanProcs(NetBSDProcessList* this) { const Settings* settings = this->super.settings; bool hideKernelThreads = settings->hideKernelThreads; bool hideUserlandThreads = settings->hideUserlandThreads; int count = 0; const struct kinfo_proc2* kprocs = kvm_getproc2(this->kd, KERN_PROC_ALL, 0, sizeof(struct kinfo_proc2), &count); for (int i = 0; i < count; i++) { const struct kinfo_proc2* kproc = &kprocs[i]; bool preExisting = false; Process* proc = ProcessList_getProcess(&this->super, kproc->p_pid, &preExisting, NetBSDProcess_new); proc->show = ! ((hideKernelThreads && Process_isKernelThread(proc)) || (hideUserlandThreads && Process_isUserlandThread(proc))); if (!preExisting) { proc->pid = kproc->p_pid; proc->ppid = kproc->p_ppid; proc->tpgid = kproc->p_tpgid; proc->tgid = kproc->p_pid; proc->session = kproc->p_sid; proc->pgrp = kproc->p__pgid; proc->isKernelThread = !!(kproc->p_flag & P_SYSTEM); proc->isUserlandThread = proc->pid != proc->tgid; proc->starttime_ctime = kproc->p_ustart_sec; Process_fillStarttimeBuffer(proc); ProcessList_add(&this->super, proc); proc->tty_nr = kproc->p_tdev; const char* name = ((dev_t)kproc->p_tdev != KERN_PROC_TTY_NODEV) ? devname(kproc->p_tdev, S_IFCHR) : NULL; if (!name) { free(proc->tty_name); proc->tty_name = NULL; } else { free_and_xStrdup(&proc->tty_name, name); } NetBSDProcessList_updateExe(kproc, proc); NetBSDProcessList_updateProcessName(this->kd, kproc, proc); } else { if (settings->updateProcessNames) { NetBSDProcessList_updateProcessName(this->kd, kproc, proc); } } if (settings->flags & PROCESS_FLAG_CWD) { NetBSDProcessList_updateCwd(kproc, proc); } if (proc->st_uid != kproc->p_uid) { proc->st_uid = kproc->p_uid; proc->user = UsersTable_getRef(this->super.usersTable, proc->st_uid); } proc->m_virt = kproc->p_vm_vsize; proc->m_resident = kproc->p_vm_rssize; proc->percent_mem = (proc->m_resident * pageSizeKB) / (double)(this->super.totalMem) * 100.0; proc->percent_cpu = CLAMP(getpcpu(kproc), 0.0, this->super.activeCPUs * 100.0); proc->nlwp = kproc->p_nlwps; proc->nice = kproc->p_nice - 20; proc->time = 100 * (kproc->p_rtime_sec + ((kproc->p_rtime_usec + 500000) / 1000000)); proc->priority = kproc->p_priority - PZERO; proc->processor = kproc->p_cpuid; proc->minflt = kproc->p_uru_minflt; proc->majflt = kproc->p_uru_majflt; int nlwps = 0; const struct kinfo_lwp* klwps = kvm_getlwps(this->kd, kproc->p_pid, kproc->p_paddr, sizeof(struct kinfo_lwp), &nlwps); /* TODO: According to the link below, SDYING should be a regarded state */ /* Taken from: https://ftp.netbsd.org/pub/NetBSD/NetBSD-current/src/sys/sys/proc.h */ switch (kproc->p_realstat) { case SIDL: proc->state = IDLE; break; case SACTIVE: // We only consider the first LWP with a one of the below states. for (int j = 0; j < nlwps; j++) { if (klwps) { switch (klwps[j].l_stat) { case LSONPROC: proc->state = RUNNING; break; case LSRUN: proc->state = RUNNABLE; break; case LSSLEEP: proc->state = SLEEPING; break; case LSSTOP: proc->state = STOPPED; break; default: proc->state = UNKNOWN; } if (proc->state != UNKNOWN) break; } else { proc->state = UNKNOWN; break; } } break; case SSTOP: proc->state = STOPPED; break; case SZOMB: proc->state = ZOMBIE; break; case SDEAD: proc->state = DEFUNCT; break; default: proc->state = UNKNOWN; } if (Process_isKernelThread(proc)) { this->super.kernelThreads++; } else if (Process_isUserlandThread(proc)) { this->super.userlandThreads++; } this->super.totalTasks++; if (proc->state == RUNNING) { this->super.runningTasks++; } proc->updated = true; } } static void getKernelCPUTimes(int cpuId, u_int64_t* times) { const int mib[] = { CTL_KERN, KERN_CP_TIME, cpuId }; size_t length = sizeof(*times) * CPUSTATES; if (sysctl(mib, 3, times, &length, NULL, 0) == -1 || length != sizeof(*times) * CPUSTATES) { CRT_fatalError("sysctl kern.cp_time2 failed"); } } static void kernelCPUTimesToHtop(const u_int64_t* times, CPUData* cpu) { unsigned long long totalTime = 0; for (int i = 0; i < CPUSTATES; i++) { totalTime += times[i]; } unsigned long long sysAllTime = times[CP_INTR] + times[CP_SYS]; cpu->totalPeriod = saturatingSub(totalTime, cpu->totalTime); cpu->userPeriod = saturatingSub(times[CP_USER], cpu->userTime); cpu->nicePeriod = saturatingSub(times[CP_NICE], cpu->niceTime); cpu->sysPeriod = saturatingSub(times[CP_SYS], cpu->sysTime); cpu->sysAllPeriod = saturatingSub(sysAllTime, cpu->sysAllTime); cpu->intrPeriod = saturatingSub(times[CP_INTR], cpu->intrTime); cpu->idlePeriod = saturatingSub(times[CP_IDLE], cpu->idleTime); cpu->totalTime = totalTime; cpu->userTime = times[CP_USER]; cpu->niceTime = times[CP_NICE]; cpu->sysTime = times[CP_SYS]; cpu->sysAllTime = sysAllTime; cpu->intrTime = times[CP_INTR]; cpu->idleTime = times[CP_IDLE]; } static void NetBSDProcessList_scanCPUTime(NetBSDProcessList* this) { u_int64_t kernelTimes[CPUSTATES] = {0}; u_int64_t avg[CPUSTATES] = {0}; for (unsigned int i = 0; i < this->super.existingCPUs; i++) { getKernelCPUTimes(i, kernelTimes); CPUData* cpu = &this->cpuData[i + 1]; kernelCPUTimesToHtop(kernelTimes, cpu); avg[CP_USER] += cpu->userTime; avg[CP_NICE] += cpu->niceTime; avg[CP_SYS] += cpu->sysTime; avg[CP_INTR] += cpu->intrTime; avg[CP_IDLE] += cpu->idleTime; } for (int i = 0; i < CPUSTATES; i++) { avg[i] /= this->super.activeCPUs; } kernelCPUTimesToHtop(avg, &this->cpuData[0]); } static void NetBSDProcessList_scanCPUFrequency(NetBSDProcessList* this) { unsigned int cpus = this->super.existingCPUs; bool match = false; char name[64]; long int freq = 0; size_t freqSize; for (unsigned int i = 0; i < cpus; i++) { this->cpuData[i + 1].frequency = NAN; } /* newer hardware supports per-core frequency, for e.g. ARM big.LITTLE */ for (unsigned int i = 0; i < cpus; i++) { xSnprintf(name, sizeof(name), "machdep.cpufreq.cpu%u.current", i); freqSize = sizeof(freq); if (sysctlbyname(name, &freq, &freqSize, NULL, 0) != -1) { this->cpuData[i + 1].frequency = freq; /* already in MHz */ match = true; } } if (match) { return; } /* * Iterate through legacy sysctl nodes for single-core frequency until * we find a match... */ for (size_t i = 0; i < ARRAYSIZE(freqSysctls); i++) { freqSize = sizeof(freq); if (sysctlbyname(freqSysctls[i].name, &freq, &freqSize, NULL, 0) != -1) { freq /= freqSysctls[i].scale; /* scale to MHz */ match = true; break; } } if (match) { for (unsigned int i = 0; i < cpus; i++) { this->cpuData[i + 1].frequency = freq; } } } void ProcessList_goThroughEntries(ProcessList* super, bool pauseProcessUpdate) { NetBSDProcessList* npl = (NetBSDProcessList*) super; NetBSDProcessList_scanMemoryInfo(super); NetBSDProcessList_scanCPUTime(npl); if (super->settings->showCPUFrequency) { NetBSDProcessList_scanCPUFrequency(npl); } // in pause mode only gather global data for meters (CPU/memory/...) if (pauseProcessUpdate) { return; } NetBSDProcessList_scanProcs(npl); } bool ProcessList_isCPUonline(const ProcessList* super, unsigned int id) { assert(id < super->existingCPUs); // TODO: Support detecting online / offline CPUs. return true; }